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Quantum anomalous Hall effect with tunable Chern number in magnetic topological insulator film

Hua Jiang,1,* Zhenhua Qiao,2 Haiwen Liu,3 and Qian Niu1,2

1International Center for Quantum Materials, Peking University, Beijing 100871, China
2Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA

3Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
(Received 5 November 2011; revised manuscript received 15 January 2012; published 30 January 2012)

We study the possibility of realizing quantum anomalous Hall (QAH) effect with tunable Chern number
through doping magnetic elements in a multilayer topological insulator film. We find that high Chern number
QAH phases exist in ideal neutral samples and can make transition to another QAH phase directly by means of
tuning exchange field strength or sample thickness. With the help of an extended Haldane model, we demonstrate
the physical mechanism of the tunable Chern number QAH phase. We show that the high Chern number QAH
phases are robust against weak magnetic and nonmagnetic disorders.
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I. INTRODUCTION

The integer quantum Hall effect1,2 is one of the most
important discoveries in condensed matter physics. When
a strong perpendicular magnetic field is applied to the
two-dimensional electron gas at low temperatures, the Hall
conductance exhibits a precise quantization in units of e2/h

(i.e., the fundamental conductance unit) due to Landau-level
quantization. This quantization is directly connected to the
topological properties of the two-dimensional bulk states,
characterized by a topological invariant C known as the first
Chern number.3,4

Nonzero Chern number can, in principle, also occur in the
band structure of other systems with time-reversal symmetry
breaking, such as in a ferromagnet, leading to the so-called
quantum anomalous Hall effect (QAHE). This effect was first
proposed in a seminal paper by Haldane5 in a honeycomb
lattice model with an average flux per unit cell being zero.
Due to its unique nontrivial topological properties and great
potential application for designing dissipationless spintronics,
extensive studies have been made to search possible host
materials of realizing such QAHE. Several candidate systems
are proposed recently, including the ferromagnetic mercury-
based quantum wells in the insulating state,6 disorder-induced
Anderson insulator,7 Rashba graphene coupled with exchange
field,8 Kagome lattice,9,10 and optical lattice models.11

However, although the QAHE has been theoretically
proposed, the Chern numbers in the proposed QAHE systems
can only take some low and limited values (i.e., C = 1,2, or 4).
This is distinct from that in the conventional integer quantum
Hall effect, where the Chern number can be very high and
tuned consecutively through adjusting external magnetic field
or Fermi energy. Therefore, a natural question arises as to
whether it is possible to find some host materials exhibiting
QAHE with tunable Chern numbers. In the following, we shall
give a positive answer by doping magnetic elements into the
topological insulator films. The topological insulator is a new
quantum phase of matter that behaves as an insulator in the
bulk but carries time-reversal symmetry protected odd-number
pairs of helical edge states (two dimensional) or surface states
(three dimensional).12

The topological insulator was first proposed in two-
dimensional materials, however, there are only limited

candidates showing the theoretical possibility of host-
ing two-dimensional topological insulator.13–20 In contrast,
there have been numerous materials or compounds found
to host the three-dimensional topological insulators both
theoretically21–26 and experimentally.27–29 This has attracted
extensive attentions from the condensed-matter-physics com-
munity, and provides an interesting platform for the practical
application in low-power dissipation spintronics. For instance,
it has been reported that magnetically doped topological
insulator could exhibit QAHE through using density functional
theory,30 and recent experimental discovery has shown giant
anomalous Hall conductance in a magnetic doped topological
insulator, which is a good sign for the final realization of
QAHE.31

In this paper, we show that the QAHE with tunable
Chern numbers can be achieved through doping magnetic
elements in a topological insulator film. The magnetic dopant
in the topological insulator results in two effects32,33: (a)
breaking the time-reversal symmetry; (b) inducing an effective
exchange field. Through investigating the evolution of the
bulk band structure, counting the edge states winding number
and the direct Hall conductance calculation, we determine the
existence of QAHE phases with tunable Chern numbers in our
studied system. By using an extended Haldane model, we give
an explanation on the mechanism of the tunable Chern number
QAHE phases. Furthermore, the influence of Fermi energy
fixed by external gate is discussed. When the Fermi energy is
slightly deviated from the zero energy, the high Chern number
QAHE phases can still survive even though the metallic phases
emerge between two separated QAHE phases. In the end, we
study the disorder effect on the obtained QAHE phase and find
that the high Chern number QAHE plateaus can be very stable
against weak disorders.

The remainder of this paper is organized as follows. In
Sec. II, we introduce a theoretical model and the methods for
calculating the kinds of topological features. In Sec. III, we
present the numerical results for the ideal neutral samples
and discuss their mechanisms. In Sec. IV, we show the
influence of the Fermi energy shifting and disorder on tunable
Chern number QAHE, which are inevitably present in realistic
samples. Finally, a brief discussion and conclusion are given
in Sec. V.
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FIG. 1. (Color online) Schematic plot of the setup: a magnetically
doped topological insulator on a substrate with its Fermi energy
being tuned by the attached external gate. Blue arrows indicate the
magnetized dopants. Nz measures the sample layers along the Z

direction.

II. MODEL AND METHODS

Figure 1 plots the schematic setup: the topological insulator
material is doped with magnetic elements, with arrows
representing the magnetic dopants. We use Nz to label the
thickness of the topological insulator layers. As a starting
point, we introduce the effective Hamiltonian. In the cubic
lattice model, the electronic state at each site i can be
expressed as φi = [ai↑,bi↑,ai↓,bi↓]T , where (a,b) denote two
independent orbits and (↑ , ↓) represent spin indices. In the
tight-binding representation, the topological insulator doped
with magnetic elements can be written as22,34,35

H = H3D + Himp,

H3D =
∑

i

E0φ
+
i φi +

∑
i

∑
α=x,y,z

φ+
i Tαφi+α̂ + H.c., (1)

Himp =
∑

i

m0φ
+
i φi,

where H3D describes the bulk Hamiltonian of the three-
dimensional topological insulator, E0, Tα , m0 are written as

E0 =
(

M −
∑

α

Bα

)
σ0 ⊗ τz −

∑
α

Dασ0 ⊗ τ0,

Tα = Bα

2
σ0 ⊗ τz + Dα

2
σ0 ⊗ τ0 − iAα

2
σα ⊗ τx, (2)

m0 = mσz ⊗ τ0,

where M , Aα , Bα , Dα are independent parameters with M

determining the inverted band gap and Aα reflecting the Fermi
velocity. α̂ is the unit vector along α = (x,y,z) direction.
σ and τ are Pauli matrices in spin and orbital spaces,
respectively. Himp is used to describe the magnetic dopants. m

measures the effective exchange field strength. For simplicity,
we assume that the Lande g factor is the same for all bases,
which is reliable because in the realistic three-dimensional
topological insulator, all lowest-energy bands determining the
band topology are always combined by p orbitals22 or d

orbitals. Since we focus on the resulting phenomena of the
topological insulator film, the layers along the Z direction are
set to be finite.

In general, analyzing the evolution of the bulk and edge
energy spectrum as functions of some tunable parameters is
an efficient way to investigate the topological features of a

system. Let us first focus on the bulk energy spectrum. Since
the studied system has the translational symmetry along both
the x and y directions, both the corresponding momenta kx

and ky are good quantum numbers. Through performing the
partial Fourier transformation

φkxky
(z) = 1√

LxLy

∑
x,y

eikxx+ikyyφi(x,y,z), (3)

the real-space Hamiltonian in Eq. (1) becomes

H1(k) =
∑
kxky ,z

{
φ+

kxky
(z)[E0 + m0]φkxky

(z)
}

+
∑
kxky ,z

{
φ+

kxky
(z)

[
Txe

ikx + Tye
iky

]
φkxky

(z)

+φ+
kxky

(z)Tzφkxky
(z + 1) + H.c.

}
. (4)

By directly diagonalizing the Hamiltonian in Eq. (4), one can
obtain the bulk band spectrum.

In order to study the edge-state physics, one has to
consider a boundary or surface, i.e., in our case, we choose
to terminate the topological insulator along the y direction and
consequently an edge exists in the y = 0 plane. Therefore, only
kx is left to be a good quantum number. The corresponding
partial Fourier transformation and the resulting momentum-
space Hamiltonian H2(kx) can be expressed as

φkx
(y,z) = 1√

Lx

∑
x,y

eikxxφi(x,y,z),

H2(kx) =
∑
kx ,y,z

{
φ+

kx
(y,z)[E0 + m0]φkx

(y,z)
}

+
∑
kx ,y,z

{
φ+

kx
(y,z)Txe

ikx φkx
(y,z)

+φ+
kx

(y,z)Tzφkx
(y,z + 1) + H.c.

}
+

∑
kx ,y,z

{
φ+

kx
(y,z)Tyφkx

(y + 1,z) + H.c.
}

=
∑
kx

H1D(kx). (5)

In this way, the system can be treated as a semi-infinite quasi-
one-dimensional tight-binding chain along the y direction.
Using the nonequilibrium Green’s function technique, the edge
Green’s function Gr (kx,E,z1,z2,y = 0) can be numerically
obtained,36 where E denotes the Fermi energy and z1/z2 labels
the layers along the Z direction on the y = 0 plane. Both
bulk and edge energy spectra information are included in the
spectral function A(kx,E) of the edge, which can be expressed
as

A(kx,E) = − 1

π

∑
z1

Im{Tr[Gr (kx,E,z1,z1,y = 0)]}. (6)

In addition, the topological invariant is another important
quantity to characterize the topological properties of the
system. For example, in the absence of external magnetic
field, a better way to judge QAHE is to see whether the Chern
number is nonzero or not. The Chern number equals to the
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zero-temperature Hall conductance and can be calculated via
the Kubo formula4

σxy = e2

h̄

∫
dkxdky

(2π )2

∑
εl<EF <εn

Im
〈l| ∂H1

∂kx
|n〉〈n| ∂H1

∂ky
|l〉

(εl − εn)2
, (7)

where EF is the Fermi energy, and εl/n and |l/n〉 are the
corresponding eigenenergy and eigenstate of H1, respectively.

For simplicity, in the following numerical calculations, we
assume that the topological insulator film is spatially isotropic.
The independent parameters are set to be Aα = A = 1.5,
Bα = B = 1.0, Dα = D = 0.1, M = 0.3. α denotes x,y,z

and nearest hopping parameter B is set as the energy unit. Our
main results of this paper still hold for anisotropic parameters
or more realistic parameters.22

III. QAHE IN IDEAL NEUTRAL SAMPLES

In this section, we focus on the topological phenomena in
ideal neutral samples. Physically, in our model, “ideal neutral”
means that in a clean topological insulator film, all valence
bands are occupied while all conduction bands are unoccupied.
Moreover, magnetic doping does not bring in any extra carriers,
and the system is not affected by the external environment.

According to the definition of the topological order, any
two insulating states are topologically equivalent only when
they can adiabatically change into each other. Therefore,
the classification of insulating state is highly related to the
evolution of bulk energy spectrum. If bulk gap closes and
reopens, the initial and final states can not be adiabatically
connected. Consequently, they belong to different topological
phases and undergo a quantum phase transition. In our system,
the time-reversal symmetry is broken due to the presence of
exchange field that is uniformly distributed on all sites. In
realistic experiments, the exchange field arises from doping
low-concentration magnetic elements, which makes the local
exchange field h nonuniformly distributed. Therefore, the
exchange field m in our model is actually an effective exchange
field. In principle, m is approximately equal to n0h with n0

the average number of dopant per site (doping concentration).
One can see that exchange field strength m could be tuned
through controlling the doping concentration n0.

In Fig. 2, we plot the bulk energy spectrum along the
high-symmetry lines for different exchange field strength m.
Without the exchange field, the bulk band gap opens, which
indicates an insulating state [see Fig. 2(a)]. When the exchange
field is introduced, the bulk gap gradually decreases along
with the increasing of the exchange field m. As shown in
Fig. 2(b), when the exchange field reaches the critical value
mc = 0.037, the bulk band gap is completely closed. When the
exchange field is further larger than mc = 0.037, the bulk band
gap reopens [see Fig. 2(c)]. The gap closing and reopening
indicate a quantum phase transition, which has been pointed
out in Ref. 30.

The major finding of this paper is that the bulk band gap is
not monotonous but oscillates as a function of the exchange
field strength m. For example, aside from mc = 0.037, we
found that there are other critical points (band gap closing and
reopening), e.g., mc = 0.525,0.819,1.089. This indicates that
there are more than two topologically different phases. From
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FIG. 2. (Color online) The bulk band spectra along the high-
symmetry lines of the magnetic element doped topological insulator
film in the presence of different exchange field strength m = 0 (a),
0.037 (b), 0.3 (c), 0.525 (d), 0.7 (e), 0.819 (f), 0.9 (g), 1.089 (h), 1.15
(i). The layer thickness is set to be Nz = 12.

the critical points of view, one can see that in Fig. 2 there are
five different phases.

One of the most striking characteristics of the nontrivial
insulating states is the existence of topologically protected
gapless edge states, i.e., in the quantum Hall effect, the
number of chiral gapless edge states equals to the nonzero
Chern number. Therefore, edge-state analysis can be regarded
as an efficient method to reveal the topology of the bulk
states.12 Figure 3 exhibits the edge spectral function A(kx,E)
for the first four topological phases with different exchange
field strength being m = 0.0 [Fig. 3(a)], 0.3 [Fig. 3(b)], 0.7
[Fig. 3(c)], 0.9 [Fig. 3(d)]. Note that in all the figures of the
edge spectral function A(kx,E), the blue (gray) regime denotes
bulk gap, green (light) regime denotes bulk band states, and
the lines represent edge states at the boundary.

FIG. 3. (Color online) Edge spectral functions A(kx,ω) of the
semi-infinite sample along the y direction for different exchange field
strength m = 0.0 (a), 0.3 (b), 0.7 (c), 0.9 (d). The sample thickness is
set to be Nz = 12.
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FIG. 4. (Color online) Edge spectral functions A(kx,ω) of the
semi-infinite sample along the y direction for different sample
thicknesses Nz = 6 (a), 12 (b), 18 (c), 24 (d). The exchange field
strength is set to be m = 0.7.

In the absence of exchange field, one can notice that there is
no edge state inside the bulk band gap in Fig. 3(a). This means
that the system has the same topology as that of the vacuum
and is considered as a trivial insulator. When the system enters
the second topological phase, i.e., 0.037 < m < 0.525, one
chiral gapless edge state appears inside the bulk band gap [see
Fig. 3(b) for m = 0.3], indicating that the system becomes a
nontrivial insulator with winding number N = 1. According
to the relationship between winding number of the edge state
and the bulk Chern number C,37 we claim that the system
belongs to a C = 1 QAHE phase. After the system undergoes
the second quantum phase transition, we observe that there are
two chiral gapless edge states locating inside the bulk band
gap [see Fig. 3(c) for m = 0.7], which labels that our system
enters another QAHE phase with Chern number being C = 2.
By continuously increasing the exchange field strength m, one
can obtain N = 2,3,4,5 . . . chiral edge states. In other words,
the QAHE phase with various nonzero Chern numbers can be
achieved in our system. Aside from controlling the exchange
field strength, we further find that the phases also depend on
the sample thickness Nz, when the exchange field strength m

is larger than the gap controlling parameter M . This can be
concluded in Fig. 4, showing the evolution of the edge states
with different sample thickness Nz.

To give a better understanding of this QAHE phases with
various Chern numbers, we study their topological properties
by directly calculating the zero-temperature Hall conductance.
In Fig. 5, we calculate the Hall conductance σxy as functions
of the exchange field m and the sample thickness Nz. In
Fig. 5(a), the phase diagram of the Hall conductance σxy in
the (Nz, m) plane is plotted, and different colors are used
to specify kinds of Hall plateaus. One can find that the Hall
conductance varies as functions of both the exchange field
and sample thickness. To be more specific, in Fig. 5(b) we
show the Hall conductance as a function of the exchange field
at fixed sample thickness Nz = 6,9,12; in Fig. 5(c) we plot
the Hall conductance as a function of the sample thickness
at fixed exchange field m = 0.3,0.5,0.7, and 0.9. Since the
topological invariant Chern number in the QAHE is identical
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FIG. 5. (Color online) (a) Phase diagram of the Hall conductance
σxy in the plane (m, Nz). (b) and (c) plot the Hall conductance for fixed
Nz = 6/9/12 and m = 0.3/0.5/0.7/0.9. The phenomena beyond the
parameter space in panel (a) are also shown.

to the Hall conductance (in units of e2/h), therefore each
separated QAHE phase and the resulting phase boundaries can
be easily determined. Figure 5 is the central result of this paper.
The obtained QAHE phases manifest the following features:
(i) Multiple discrete QAHE phases exist in our system with
phase transitions directly from one to another by varying the
exchange field strength or sample thickness. (ii) In contrast
to the reported QAHE proposals, the Chern number in our
proposal can be very high and the highest Chern number is
comparable to the total layers Nz; (iii) the Hall conductance
σxy is not monotonous as a function of the exchange field
strength m. For instance, Fig. 5(b) can be divided into three
regions where Hall conductance σxy is stepped by 1, −2, and
1 along with the increasing of exchange field strength m. (iv)
We emphasize that the relationship between σxy and m in our
model resembles that between σxy and the external magnetic
field in the conventional quantum Hall effect.

So far, we have showed the existence of the tunable Chern
number QAHE phases and demonstrated their topological
properties in the neutral samples. In the following, we
will move to the physical mechanism leading to such phe-
nomena. Compared to the previous two-dimensional QAHE
models,5,8,30,38 our studied model is quasi-three-dimensional.
However, to satisfy the condition of requiring the vanishing
wave function at the regions z < 0 and z > Nz, the wave
vector kz in the Z direction should take real discrete values
with their magnitude approach kz = nπ

Nz
(n = 1,2,3, . . . ,Nz) or

one imaginary value.39,40 The latter case leading to the C = 1
QAHE phase is reported in Ref. 30. We will focus on the former
one. In the momentum space, the Hamiltonian of our system
can be written as H (k) = ∑

kz
Hkz

(kx,ky) with kx,ky being
the momenta along the x and y directions and kz taking some
concrete real constants. In this way, our model can be regarded
as the combination of a series of two-dimensional square
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lattice models described by Hkz
(kx,ky). Moreover, Hkz

(kx,ky)
can be block-diagonalized and the new diagonal Hamiltonian
Hkz

(kx,ky) is expressed as

Hkz
(kx,ky) = εkz

(kx,ky) +
(

h1
kz

(kx,ky) O

O h2
kz

(kx,ky)

)
,

h1
kz

(kx,ky) = d1
z σz + dxσx + dyσy, (8)

h2
kz

(kx,ky) = d2
z σz + dxσx + dyσy,

where the parameters εkz
, dx , dy , d1

z , d2
z are written as

εkz
(kx,ky) = −3D + D(cos kx + cos ky + cos kz),

dx = A sin kx,

dy = A sin ky,
(9)

d1
z (kx,ky) = −

√[
Mkz

(kx,ky)
]2 + A2 sin2 kz + m,

d2
z (kx,ky) =

√[
Mkz

(kx,ky)
]2 + A2 sin2 kz + m,

Mkz
(kx,ky) = M − 3B + B(cos kx + cos ky + cos kz).

One can find that both two block Hamiltonians h1
kz

and h2
kz

are the Haldane’s model that is similar to the model described
in Ref. 38. Only when d1

z (d2
z ) can change its sign in the first

Brillouin zone, the two bands of h1
kz

(h2
kz

) become inverted
to result in QAHE with C = +1 (−1) Chern number.38 For
positive exchange field strength m, h2

kz
is a trivial insulator

since d2
z can not change its sign. In contrast, d1

z can change
its sign and consequently h1

kz
describes the QAHE for certain

positive exchange field strength m. Combining the results for
h1

kz
and h2

kz
, the total Chern number of Hkz

in the different zone
of the exchange field strength m can be expressed as38

C =

⎧⎪⎨⎪⎩
0, 0 < m < mc1(kz) or m > mc3(kz)

1, mc1(kz) < m < mc2(kz)

−1, mc2(kz) < m < mc3(kz)

(10)

with the constants mc1,mc2,mc3 being

mc1(kz) =
√

(M − B + B cos kz)2 + A2 sin2 kz,

mc2(kz) =
√

(M − 3B + B cos kz)2 + A2 sin2 kz, (11)

mc3(kz) =
√

(M − 5B + B cos kz)2 + A2 sin2 kz.

Equations (8)–(10) are the main mechanism of the tunable
Chern number QAHE phases. The obtained results in the
numerical simulations can be explained by such a mechanism.
In the following, we will demonstrate how it is applied to the
continuously increasing exchange field strength m. Since kz

takes a series of discrete values, the constants mc1,mc2,mc3

also take a series of discrete values. When m exceeds mc1,
the corresponding Hkz

transitions from the trivial insulator
to the C = 1 QAHE phase. And, consequently, the quantized
Hall conductance σxy is increased to e2/h. σxy will keep as a
constant until m exceeds another mc1. Therefore, the quantum
Hall plateaus appear in Fig. 5. As shown in Fig. 5(b), when
Hall conductance σxy reaches its maxima, it will begin to
drop 2e2/h due to QAHE transition from C = 1 to C = −1
for one Hkz

. For even larger m exceeding mc3, Hkz
transitions

from C = −1 QAHE phase to a trivial insulator. Consequently,

σxy shows quantized plateaus with interval of e2/h at the
right-hand side of Fig. 5(b).

Next, let us explain the phenomena in Fig. 5(c). According
to Eqs. (10) and (11), mc1 below the fixed m will contribute one
Chern number. Although kz and mc1 vary for different sample
thickness Nz, the numbers of discrete mc1 below m will not
change until Nz exceeds the critical thickness. This explains
why the Hall conductance also shows quantized plateaus in
Fig. 5(c). From Eq. (11), one can obtain that the minimum of
mc1 approaches the gap controlling parameter M . Therefore,
in order to observe the higher Chern number QAH state, the
exchange field strength should be larger than M . This can
be verified in our numerical simulations, e.g., in Fig. 5(c)
only the C = 1 QAHE is obtained when m is identical to gap
parameter M .

IV. ROBUSTNESS OF THE TUNABLE QAHE IN
REALISTIC SAMPLES

In the preceding section, we study the topological phe-
nomena in the ideal neutral samples. However, in the realistic
materials, such ideal conditions can hardly be satisfied. In
general, there are two kinds of inevitable impurity effects.
First, the impurities may bring in some extra carriers that
make the Fermi energy shift from the bulk band gap. Second,
the imperfect especially nonuniform doping may induce the
disorder effects leading to the magnetic or nonmagnetic
scattering. In the following, the influence of these two effects
on the high Chern number QAHE will be addressed.

We first concentrate on the case that impurities provide
some extra carriers. Fortunately, one can overcome this
difficulty by utilizing an external gate to fix the Fermi energy
into band gap (see as Fig. 1). In experiment, the Fermi
energy can be tuned by the gate voltage. In Fig. 6, the Hall
conductance σxy as the function of exchange field strength m

or sample thickness Nz for different fixed Fermi energies EF

0.0 0.4 0.8 1.2
0

2

4

0.0 0.4 0.8 1.2
0

1

2

3

10 20 30
0

1

2

3

10 20 30
0

2

4

m

(b)

xy
(e

2 /h
)

xy
(e

2 /h
)

 EF=0.0

 EF=0.05

 EF=0.10

xy
(e

2 /h
)

xy
(e

2 /h
)

m

 EF=0.0

 EF=0.05

 EF=0.10

(a)

(c)

N
z

(d)

N
z

FIG. 6. (Color online) (a), (b) The Hall conductance σxy as a
function of the exchange field strength m under different Fermi
energies EF = 0.00,0.05,0.10 at fixed sample thickness Nz = 9
(a) and Nz = 12 (b), respectively. (c), (d) The Hall conductance
σxy as a function of the layer thickness Nz under different Fermi
energies EF = 0.00,0.05,0.10 at fixed exchange field m = 0.5
(a) and m = 0.7 (b), respectively.
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is plotted. The presence of the quantized plateaus prove that
the high Chern number QAHE phase can still hold to some
degree. Nevertheless, a regime with continuously varying Hall
conductance exists between two consecutive quantized Hall
plateaus, which indicates that the metallic phases emerge
between two separated QAHE phases. For the fixed Fermi
energy shift, the metallic phases will easily show up in the
high Chern number QAHE regimes with strong exchange field
strength m or large sample thickness Nz.

As discussed in the preceding section, our model can be
considered as a series of two-dimensional Haldane models
[see Eq. (8)] that is characterized by the wave vector kz.
Obviously, in order to obtain the quantized Hall conductance,
the Fermi energy should locate inside the bulk band gaps of
all the Haldane models, i.e., from Eqs. (8) and (9) all possible
discrete kz should satisfy the following relationship:

εkz
(0,0) − ∣∣d1

z (0,0)
∣∣ < EF < εkz

(0,0) + ∣∣d1
z (0,0)

∣∣. (12)

If Eq. (12) is not satisfied, the metallic phase will appear. A
more detailed analysis of Eq. (12) shows that in order to find
the high Chern number QAHE in the realistic materials, the
smaller m or thinner Nz as well as the lower Fermi energy shift
are required. This analytical conclusion agrees well with our
numerical simulations.41

Second, let us discuss the disorder effect. Since disorder
breaks the translational symmetry, it is difficult to study
its effect on the topological properties using energy band
theory. However, through analyzing the resulting transport
properties, disorder effect on the bulk topological properties
could be estimated. For example, in a two-terminal QAHE
device, longitude conductance arises from the transport of
chiral edge states. As discussed in Sec. III, the number of
chiral edge states is identical to the Chern number. Each chiral
edge state contributes one quantized conductance that makes
the total longitudinal conductance of the two-terminal device
equivalent to the Hall conductivity of QAHE. Moreover, the
absence of the backscattering for chiral edge state protects
the quantized longitudinal conductance to be robust as Hall
conductivity against the external disorder. Therefore, the
two-terminal longitudinal conductance can serve as a good
measurement for the robustness of the Hall conductivity.
In the following, we apply our tight-binding model to a
two-terminal device and study its transport properties using
the nonequilibrium Green’s function method. Here, we will
not introduce the calculating method in detail, which could
be found in Ref. 42. Our considered model is illustrated
in the inset of Fig. 7. The disorders are only considered
in the central scattering region. The source and drain are
perfect semi-infinite leads, which will not bring any redundant
scattering at the interfaces between the leads and central
region. In general, there are two kinds of disorders existing
in a real system: the white noise and the nonuniform doping.
In our model, the white noise is modeled by the onsite
disorder energy Wiσ0 ⊗ τ0 with Wi uniformly distributed in
the interval of [−W

2 ,W
2 ], where W measures the strength

of disorder. The nonuniform magnetic doping is modeled
by the uniform background, which produces onsite Zeeman
energies mσz ⊗ τ0, and the exchange field at different sites
fluctuates, leading to mniσz ⊗ τ0 on each site. Here, ni is

0.0 0.4 0.8 1.2
0

1

2

3

σ
S

D
 (

e2 /h
)

exchange field strength m

 W=0, n
W
=0

 W=1, n
W
=0.4

 W=2, n
W
=0.8

 W=3, n
W
=1.2

X direction

DrainSource

FIG. 7. (Color online) The longitudinal conductance σSD as a
function of the exchange field strength m under different white
noise disorder strength W and the nonuniform doping factor nW

combinations. The error bar is used to denote the conductance
fluctuation δσSD . The Fermi energy is set to be EF = 0.05. Inset:
the schematic plot of the two-terminal device. Disorders are only
considered in the central scattering regime, which is modeled by a
Nx × Ny × Nz = 30 × 40 × 9 cubic lattice models.

uniformly distributed in the range [− nW

2 , nW

2 ] with nW being
the nonuniform doping factor.

Figure 7 plots the longitudinal conductance σSD and the cor-
responding conductance fluctuation δσSD versus the exchange
field strength m for different combinations (W,nW ) = (0,0),
(1, 0.4), (2, 0.8), and (3, 1.2). In absence of disorder, σSD shows
perfect quantized conductance plateaus (see the squared-
symbol curve). When disorder is present, we found that
around the regimes close to the quantum phase transition (e.g.,
m ∈ [0.94,1.06]), the conductance is easy to be destroyed,
indicating that the disorder results in the metallic phase
permitting the state being backscattered. The obtained metallic
region is in excellent consistence with the results from the Hall
conductance calculation with the Fermi-energy shift. While
in the central regime of each plateau (e.g., m ∈ [0.74,0.86]),
the longitudinal conductance σSD remains quantized with
vanishing conductance fluctuations δσSD even when the white
noise disorder strength approaches W = 3 and nonuniform
factor reaches nW = 1.2. Since the existence of chiral edge
states is the only possible mechanism to interpret the absence
of backscattering, one can conclude that the high Chern
number QAH phases are robust against weak white noise and
nonuniform magnetic doping.43 When the disorder strength
becomes extremely stronger, its influence to QAH phase
becomes complicated. The disorder may heavily renormalize
the band gap and induce exotic phenomena, e.g., “topological
Anderson insulator.”35

V. DISCUSSION AND CONCLUSION

In principle, the Chern number in our model can be
very high (proportional to layer thickness). One challenge of
obtaining such high Chern number QAHE phase is that the
exchange field strength m should be larger than the bulk band
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gap of the topological insulator. This condition is difficult to be
realized in Bi2Se3 and many other already synthetic materials.
However, with the rapid development of this field, it is highly
possible to find some narrow-gap topological insulators to
satisfy the condition in the near future. First, recent works
show that the energy gap of topological insulator can be
decreased even to the criticality (nearly zero bulk energy gap)
through special doping44 or strain45 techniques. Second, in the
supporting materials of Ref. 30, researchers show that 5% Cr
doping in Bi2Se3 can produce an exchange field up to around
0.2 eV. Once the exchange field is larger than the bulk gap of the
topological insulator, a high Chern number QAHE phase can
be obtained through tuning the sample thickness. In addition,
we want to emphasize that the sign of the gap controlling
parameter M is not so important for observation of the high
Chern number QAHE phase. In other words, one can also
obtain the tunable high Chern number QAHE in semimetal
(M = 0) or narrow-gap normal semiconductor (M < 0). In
these two cases, the QAHE phases arise from the bulk
bands.

Moreover, we want to discuss the relationship between
the QAHE and the extended Haldane model. In the main
text, we have claimed that the extended Haldane model can
be used to explain the emergence of the quantized Hall
plateaus. However, in realistic materials, there are several
features that might make the system deviate from the scope
of the extended Haldane model. For example, (i) when the
topological insulator is doped with some magnetic impurities,
Lande g factors of all the occupied orbitals might be different,
thus, the mass term in the Hamiltonian has diverse values
and the Hamiltonian can not be reduced to the extended
Haldane model; (ii) impurities may destroy the inversion
symmetry, which leads to a much more complicated situation
that can not be captured by the Haldane model. Fortunately,
in our numerical simulations, we have considered these two

important features, and our results indicate that the tunable
high Chern number QAHE plateaus are very robust against
these two kinds of violations. This robustness can be attributed
to the fact that the discrete finite kz protects the system from
small disturbance. The stability of QAHE under disorders
should be very significant in the experimental realization.
It is worth mentioning that magnetically doped topological
insulators can also host another very interesting state, the Weyl
semimetal.46–48

In summary, by using the tight-binding method, we demon-
strate that tunable Chern number QAHE can in principle be
observed through doping magnetic elements in a topological
insulator film. Perfect quantum plateaus in the (m, Nz) plane
exist in the ideal neutral samples. Topological properties of the
tunable high Chern number QAHE are discussed by examining
the evolution of bulk and edge states as well as the direct Hall
conductance calculation. Moreover, the physical origins of
the tunable Chern number QAHE phase are explained using
the extended Haldane model. Further, the robustness of the
tunable Chern number QAHE in the presence of nonmagnetic
and magnetic disorders is discussed. Our theoretical prediction
should shed some light on the searching of high Chern number
QAHE materials.49
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